Classification of Malware Using Structured Control Flow

نویسندگان

  • Silvio Cesare
  • Yang Xiang
چکیده

Malware is a pervasive problem in distributed computer and network systems. Identification of malware variants provides great benefit in early detection. Control flow has been proposed as a characteristic that can be identified across variants, resulting in flowgraph based malware classification. Static analysis is widely used for the classification but can be ineffective if malware undergoes a code packing transformation to hide its real content. This paper proposes a novel algorithm for constructing a control flow graph signature using the decompilation technique of structuring. Similarity between structured graphs can be quickly determined using string edit distances. To reverse the code packing transformation, a fast application level emulator is proposed. To demonstrate the effectiveness of the automated unpacking and flowgraph based classification, we implement a complete system and evaluate it using synthetic and real malware. The evaluation shows our system is highly effective in terms of accuracy in revealing all the hidden code, execution time for unpacking, and accuracy in classification. .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paranoid Android: Android Malware Classification Using Supervised Learning on Call Graphs

Malware design and detection is an eternal arms race of increasing sophistication. A new front has been recently expanded in the discipline of malware obfuscation and self-modification, seeking to fool the signature-based approaches dominant in commercial anti-virus software. In response, security researchers have been seeking to design methods to classify executables based on their semantic fu...

متن کامل

A Statistical Approach for Discovering Critical Malicious Patterns in Malware Families

In this paper, we present carefully selected critical malicious patterns, which are in common among malware variants in the same malware family, but not other malware families, using statistical information processing. The analysed critical malicious patterns can be an effective training dataset, towards classification of known and unknown malware variants. We present malware variants as a set ...

متن کامل

Detecting Mobile Malware with TMSVM

With the rapid development of Android devices, mobile malware in Android becomes more prevalent. Therefore, it is rather important to develop an effective model for malware detection. Permissions, system calls, and control flow graphs have been proved to be important features in detection. In this paper, we utilize both static and dynamic strategies with a text classification method, TMSVM, to ...

متن کامل

Malware Detection using Classification of Variable-Length Sequences

In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...

متن کامل

No More Gotos: Decompilation Using Pattern-Independent Control-Flow Structuring and Semantics-Preserving Transformations

Decompilation is important for many security applications; it facilitates the tedious task of manual malware reverse engineering and enables the use of source-based security tools on binary code. This includes tools to find vulnerabilities, discover bugs, and perform taint tracking. Recovering high-level control constructs is essential for decompilation in order to produce structured code that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010